prove:
2tanθ + 2cotθ = 2secθ×cosecθ
Answers
Answered by
1
see this it will be the
Attachments:
krraja121:
thanks
Answered by
1
2(tanA+cotA) = 2secA*cosecA
2(sinA/cosA+cosA/sinA) = 2secA*cosecA
2(sin^2A+cos^2A/sinAcosA) = 2secAcosecA
2(1/sinAcosA) = 2secAcosecA
2secAcosecA = 2secAcosecA
so LHS = RHS
2(sinA/cosA+cosA/sinA) = 2secA*cosecA
2(sin^2A+cos^2A/sinAcosA) = 2secAcosecA
2(1/sinAcosA) = 2secAcosecA
2secAcosecA = 2secAcosecA
so LHS = RHS
Similar questions