prove √3+1 (3-cot30) =3 tan60-2sin 60
Answers
Answered by
0
L.H.S: (√3 + 1) (3 – cot 30°)
=(√3 + 1) (3 – √3) [∵cos 30° = √3]
= (√3 + 1) √3 (√3 – 1) [∵(3 – √3) = √3 (√3 – 1)] = ((√3)2– 1) √3 [∵ (√3+1)(√3-1) =
((√3)2 – 1)]
=(3-1) √3 = 2√3
Similarly solving
R.H.S: tan3 60° – 2 sin 60°
Since, tan 60o = √3 and sin 60o = √3/2,
We get,
(√3)3 – 2.(√3/2) = 3√3 – √3 =
2√3
Therefore, L.H.S = R.H.S Hence, proved.
Similar questions