Math, asked by peddagondasathvik3, 5 months ago

prove 3+2√5 is an irrational ​

Answers

Answered by Anonymous
43

Answer:

Answer:-

  • Please refer to the attachment ✔️ ✔️
Attachments:
Answered by HA7SH
19

Step-by-step explanation:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 \huge\bold\star\red{\underline{Answer:-}}

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 \Large\bold\star\green{\underline{To\ prove:-}}

3+2\sqrt{5}

 \large\bold\star\purple{\underline{Solution:-}}

\Longrightarrow Let us assume the opposite,

i,e., 3+2\sqrt{5}

Hence, 3+2\sqrt{5} can be written in the form \frac{a}{b}

Hence, 3+2\sqrt{5} = \frac{a}{b}

2\sqrt{5} = \frac{a}{b} -3

2\sqrt{5} = \frac{a-3b}{b}

\sqrt{5} = \frac{1}{2} × \frac{a}{b} -3

\sqrt{5} = \frac{a-3b}{2b}

Here, \sqrt{5} is irrational.

And, \frac{a-3b}{2b} is rational.

Since, rational is unequal to irrational .

\therefore , 3+2\sqrt{5} is irrational.

Hence proved.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 \bold\star\red{\underline{That's\ all}}\star

 \bold\star\orange{\underline{Hope\ it\ helps\ you}}\star

Similar questions