prove 4 sin^2x+6cos^2x=5
Answers
Answer:
Given that
4cos^{2} x+6 sin^{2} x+5
This can be written as
⇒4cos ^{2} x+4sin ^{2} x=5 2
⇒4(cos ^{2 } x+sin^{2} x) + 2 sin^{2} x+5
⇒4+2sin ^ {2} x=5
⇒2sin ^{2} x=1
⇒sin ^{2} x= 1/2
⇒sinx= 1/sqrt{2}
⇒x=45 degrees
I hope this may helps you! :)
Answer:
x = 45°
Step-by-step explanation:
Correct Question :-
Solve 4sin²x + 6cos²x = 5
Given ,
4sin²x + 6cos²x = 5
To Find :-
Value of 'x'
Formula Required :-
1) sin²x + cos²x = 1
2) cos²x = (cosx)²
3) cos45° = 1/√2
Solution :-
4sin²x + 6cos²x = 5
4sin²x + 4cos²x + 2cos²x = 5
[ ∴ 6cos²x can be written as '4cos²x + 2cos²x' ]
Taking '4' as common :-
4(sin²x + cos²x) + 2cos²x = 5
[ ∴ sin²x + cos²x = 1 ]
4(1) + 2cos²x = 5
4 + 2cos²x = 5
2cos²x = 5 - 4
2cos²x = 1
cos²x = 1/2
(cosx)² = 1/2
[ ∴ cos²x = (cosx)² ]
cosx = 1/√2
cosx = cos45°
[ ∴ cos45° = 1/√2 ]
Cancelling 'cos' on both sides :-
x = 45°