Math, asked by deepak38537, 4 months ago

prove √5 is a irrational no.​

Answers

Answered by pradeepbauddh4
0

Answer:

Given: √5

We need to prove that √5 is irrational

Proof:

Let us assume that √5 is a rational number.

Sp it t can be expressed in the form p/q where p,q are co-prime integers and q≠0

⇒√5=p/q

On squaring both the sides we get,

⇒5=p²/q²

⇒5q²=p² —————–(i)

p²/5= q²

So 5 divides p

p is a multiple of 5

⇒p=5m

⇒p²=25m² ————-(ii)

From equations (i) and (ii), we get,

5q²=25m²

⇒q²=5m²

⇒q² is a multiple of 5

⇒q is a multiple of 5

Hence, p,q have a common factor 5. This contradicts our assumption that they are co-primes. Therefore, p/q is not a rational number

√5 is an irrational number

Hence proved

Answered by LEGENDARYLEARNERS
1

Answer:

ANSWER

Let 5 be a rational number.

then it must be in form of  qp  where,  q=0     ( p and q are co-prime)

5=qp

5×q=p

Suaring on both sides,

5q2=p2           --------------(1)

p2 is divisible by 5.

So, p is divisible by 5.

p=5c

Suaring on both sides,

p2=25c2         --------------(2)

Put p2 in eqn.(1)

5q2=25(c)2

q2=5c2

So, q is divisible by 5.

.

Thus p and q have a common factor of 5.

So, there is a contradiction as per our assumption.

We have assumed p and q are co-prime but here they a common factor of 5.

The above statement contradicts our assumption.

Therefore, 5 is an irrational number.

Mark me BRAINLEIST for free POINTS

Follow me

Follow back

Thank

Similar questions