English, asked by vaibhavvermabti, 2 months ago

Prove √5 is irrational hi Ankita pmb-kozm-jsz to talk about each other​

Answers

Answered by kavinsiddhu758
0

Answer:

Let us assume that √5 is a rational number.

So it can be expressed in the form p/q where p,q are co-prime integers and q≠0

⇒ √5 = p/q

On squaring both the sides we get,

⇒5 = p²/q²

⇒5q² = p² —————–(i)

p²/5 = q²

So 5 divides p

p is a multiple of 5

⇒ p = 5m

⇒ p² = 25m² ————-(ii)

From equations (i) and (ii), we get,

5q² = 25m²

⇒ q² = 5m²

⇒ q² is a multiple of 5

⇒ q is a multiple of 5

Hence, p,q have a common factor 5. This contradicts our assumption that they are co-primes. Therefore, p/q is not a rational number

√5 is an irrational number.

Hence proved

MARK ME AS BRAINLIEST !!

Answered by ankitasingh2352
0

Answer:

no yrr sorry but I can't join any meating

please don't ask me these types of things again.

Similar questions