Math, asked by piyubanerjee200, 8 months ago

prove √7+√3 is irrational​

Answers

Answered by ayatich2008
2

Answer:

Step-by-step explanation:

To prove :-

√3-√7 is irrational

-----------------

Lets assume that √3-√7 is rational.

√3-√7 = r , where r is a rational number.

Squaring both the sides ,

[√3-√7 ]² = r²

3 - 2√21 +7 = r²

10 - 2√21 = r²

- 2√21 = r² - 10

√21 = r² - 10 / -2

Here ,

RHS is purely rational .

But , on the other hand , LHS is irrational [ √ 21 ]

This is a contradiction.

Hence , our assumption was wrong.

Thus , √3-√7 is irrational.

Hope this Helps You !!!!

Answered by Anonymous
14

ANSWER✔

\large\underline\bold{GIVEN,}

\sf\dashrightarrow \sqrt{7}+ \sqrt{3}

\large\underline\bold{TO\:PROVE,}

\rm{\boxed{\bf{\green{ \star\:\:\sqrt{7}+ \sqrt{3}\:IS\: IRRATIONAL\:NUMBER. \:\: \star}}}}

\large\underline\bold{SOLUTION,}

\sf\therefore assuming\:\sqrt{7}+ \sqrt{3} \:as \:a\:rational\:number.

where,

\sf\dashrightarrow \sqrt{7}+ \sqrt{3}= \dfrac{a}{b} \:---[ where\:a \:and\:b\:are\:coprime\:and\:integers\:and\: b \neq 0

\sf\implies \sqrt{7}+ \sqrt{3}= \dfrac{a}{b}

\sf\implies \sqrt{7} = \dfrac{a}{b}-\sqrt{3}

\sf\implies \sqrt{7} = \dfrac{a-\sqrt{3}b}{b}

\sf\therefore \sqrt{7}\:is\:an\:irrational\:number

\sf\therefore \dfrac{a-\sqrt{3}b}{b}\:is\:also\:an\:irrational\:number

\sf\therefore it\:contradicts\:the\:fact\:that\: \sqrt{7}+ \sqrt{3} \:is\:an\:irrational\:number.

\sf\therefore\red{these\: contradiction\:has\:occured\:due\:to\:our\:wrong\:assumption\:that\: \sqrt{7}+ \sqrt{3} \:as \:a\:rational\:number}

HENCE,

\large{\boxed{\bf{ \star\:\: \sqrt{7}+ \sqrt{3} \:IS\:AN\:IRRATIONAL\:NUMBER.\:\: \star}}}

____________________

Similar questions