Math, asked by Piyali795, 10 months ago

Prove:
a^-1/a^-1+b^-1 + a^-1/a^-1-b^-1 = 2b^2/b^2-a^2

Answers

Answered by VishnuPriya2801
3

Answer:

 \frac{ {a}^{ - 1} }{ {a}^{ - 1}  +  {b}^{ - 1} }  +  \frac{ {a}^{ - 1} }{ {a}^{ - 1} -  {b}^{ - 1}  }  =  \frac{2 {b}^{2} }{ {b}^{2} -  {a}^{2}  }  \\ \\ \frac{ \frac{1}{a} }{ \frac{1}{a} +  \frac{1}{b}  }  +  \frac{ \frac{1}{a} }{ \frac{1}{a}  -  \frac{1}{b} }  =  \frac{2 {b}^{2} }{ {b}^{2}  -  {a}^{2} }  \\ \\  \frac{ \frac{1}{a} }{ \frac{b + a}{ab} }  +  \frac{ \frac{1}{a} }{ \frac{b - a}{ab} }  =  \frac{2 {b}^{2} }{ {b }^{2} -  {a}^{2}  }  \\ \\ \frac{1}{a}  \times  \frac{ab}{b + a}  +  \frac{1}{a}  \times  \frac{ab}{b - a}  =  \frac{2 {b}^{2} }{ {b}^{2} -  {a}^{2}  }  \\ \\ \frac{b}{b + a}  +  \frac{b}{b - a}  =  \frac{2 {b}^{2} }{ {b}^{2} -  {a}^{2}  } \\ \\ \frac{b(  b - a) + b(b + a)}{(b + a)(b - a)}  =  \frac{2 {b}^{2} }{ {b}^{2} -  {a}^{2}  }  \\ \\ \frac{b {}^{2}  - ab +  {b}^{2} + ab }{ {b}^{2} -  {a}^{2}  }  =  \frac{2 {b}^{2} }{ {b}^{2} -  {a}^{2}  }  \\ \\ \frac{2 {b}^{2} }{ {b}^{2}  -  {a}^{2} }  =  \frac{2 {b}^{2} }{ {b}^{2}  -  {a}^{2} }

Therefore, LHS=RHS.

Note:

(a+b)(a-b)=a²-b²

Similar questions