Math, asked by sanatankrmishra, 2 months ago

prove (a^2+b^2)=(a+b)^2-2ab=(a-b)^2+2ab​

Answers

Answered by sathvik7678
0

Step-by-step explanation:

To prove:-

(a^2+b^2)=(a+b)^2-2ab=(a-b)^2+2ab

Let us split it

i)Lets prove (a^2+b^2)=(a+b)^2-2ab

We know that,

 {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

So, (a+b)^2 - 2ab = a^2 + b^2 + 2ab - 2ab

2ab gets cancelled

= a^2 + b^2

Hence , proved

ii) Let's prove a^2 + b^2 = (a-b)^2 + 2ab

We know that,

 {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}   - 2ab

So, (a-b)^2+2ab = a^2 + b^2 -2ab + 2ab

2ab gets cancelled

= a^2 + b^2

Hence, proved

Hence proved that, (a^2+b^2)=(a+b)^2-2ab=(a-b)^2+2ab

Hope this answer is helpful

Sathvik✍️

Similar questions