Math, asked by HT03, 1 year ago

Prove - (a^2)cos2B + (b^2) cos2A + 2ab cos(A - B) = c^2​

Answers

Answered by Anonymous
4

1) By multiple angle trigonometric identity cos(2B) = cos²B - sin²B and cos(2A) = cos²A - sin²A

Cos(A-B) = cos(A)cos(B) + sin(A)sin(B) [compound angle identity]

2) So, a²cos(2B) + b²cos(2A) + 2abcos(A-B) = a²cos²B - a²sin²B + b²cos²A - b²sin²A + 2ab[cos(A)cos(B) + sin(A)sin(B)]

3) [a²cos²B + 2abcos(B)cos(A) + b²cos²A] - [b²sin²A - 2absin(A)sin(B) + a²sin²B]

= {acos(B) + bcos(A)}² - {bsin(A) - asin(B)}²  

[Application of the algebraic identities (a+b)² and (a-b)²]

4)acos(B) + bcos(A) = c [Projection law of triangle]  and asin(B) = bsin(A) [By sine law of triangle]

Hence, bsin(A) - asin(B) = 0 and the first part in the above is = c²

Substituting these in (3), we have

a²cos(2B) + b²cos(2A) + 2abcos(A-B) = c² - 0  

Thus, a²cos(2B) + b²cos(2A) + 2abcos(A-B) = c² [Proved]

▄▆ ▇█ Plz ตαɾk αs ճɾαíղlíҽsԵ █▇ ▆▄

◦•●◉✿ Fσℓℓσω Mε ✿◉●•◦

$○f | @____❤

Answered by arjunbhatia04
1

Answer:

hmm mm mm mm mm mm mm mmmmmmmmmmm

Similar questions