prove a^3 +b^3 +c^3 -3abc= (a+b+c)(a^2 +b^2 +c^2 -ab-bc-ca)
Answers
Answered by
1
LHS
a^3 + b^3 + c^3 - 3abc
factor a^3 + b^3 using cubic formula
(a+b)(a^2 - ab + b^2) + c^3 - 3abc
now we add 3ab and subtract 3ab at the same time into (a^2 -ab + b^2) get:
(a+b)(a^2 +2ab +b^2 -3ab) + c^3 - 3abc
*note that (a^2 + 2ab + b^2 -3ab) = (a^2 - ab + b^2)
Now that we have factors of a perfect square in (a^2 +2ab +b^2) we can compress it to form
(a+b)[ (a+b)^2 -3ab)] + c^3 - 3abc
all i did was change (a^2 +2ab +b^2 -3ab) to [(a+b)^2 -3ab)]
distribute the (a+b) which gives us
(a+b)^3 -3ab(a+b) + c^3 - 3abc
Again we have a perfect cube so we can factor to get our (a + b + c) term. The two cubic terms are (a+b)^3 and c^3
---note (a+b)^3 + c^3 = (a+b+c)[(a+b)^2-c(a+b) + c^2]
(a+b+c)[(a+b)^2-c(a+b) + c^2] - 3ab(a+b) - 3abc
Now we factor out the -3ab on the right hand side to get
(a+b+c)[(a+b)^2-c(a+b) + c^2] - 3ab(a+b+c)
Then we factor out the (a+b+c)
(a+b+c)[(a+b)^2-c(a+b) + c^2 - 3ab]
the term [(a+b)^2-c(a+b) + c^2 - 3ab] turns into (a^2 + b^2 + c^2 - ab - ac - bc) when fully factored and the terms canceled, and thus we get
(a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc)
a^3 + b^3 + c^3 - 3abc
factor a^3 + b^3 using cubic formula
(a+b)(a^2 - ab + b^2) + c^3 - 3abc
now we add 3ab and subtract 3ab at the same time into (a^2 -ab + b^2) get:
(a+b)(a^2 +2ab +b^2 -3ab) + c^3 - 3abc
*note that (a^2 + 2ab + b^2 -3ab) = (a^2 - ab + b^2)
Now that we have factors of a perfect square in (a^2 +2ab +b^2) we can compress it to form
(a+b)[ (a+b)^2 -3ab)] + c^3 - 3abc
all i did was change (a^2 +2ab +b^2 -3ab) to [(a+b)^2 -3ab)]
distribute the (a+b) which gives us
(a+b)^3 -3ab(a+b) + c^3 - 3abc
Again we have a perfect cube so we can factor to get our (a + b + c) term. The two cubic terms are (a+b)^3 and c^3
---note (a+b)^3 + c^3 = (a+b+c)[(a+b)^2-c(a+b) + c^2]
(a+b+c)[(a+b)^2-c(a+b) + c^2] - 3ab(a+b) - 3abc
Now we factor out the -3ab on the right hand side to get
(a+b+c)[(a+b)^2-c(a+b) + c^2] - 3ab(a+b+c)
Then we factor out the (a+b+c)
(a+b+c)[(a+b)^2-c(a+b) + c^2 - 3ab]
the term [(a+b)^2-c(a+b) + c^2 - 3ab] turns into (a^2 + b^2 + c^2 - ab - ac - bc) when fully factored and the terms canceled, and thus we get
(a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc)
Similar questions