Prove a^3 + b^3 > 2b^3 if a,b,c are in hp
Answers
Answered by
0
Step-by-step explanation:
Given Prove a^3 + b^3 > 2b^3 if a,b,c are in hp
- So a,b,c are in h.p A.M > G.M > h.M
- Now b is harmonic mean of a and c
- So G.M of a and c will be √ac
- So √ac > b or (√ac)^n > b^n
- Now a^n, c^n
- So A.M will be a^n + c^n / 2
- G. M will be √a^n x c^n
- = (√ac)^n
- Now a^n + c^n / 2 > (√ac)^n > b^n
- Therefore a^n + c^n / 2 > b^n
- Now a^n + c^n > 2 b^n
- Now n belongs to natural numbers.
- Now we have a^3 + c^3 > 2 b^3
Reference link will be
https://brainly.in/question/4645111
Similar questions