Math, asked by balkaran9857, 11 months ago

Prove a^3 + b^3 > 2b^3 if a,b,c are in hp

Answers

Answered by knjroopa
0

Step-by-step explanation:

Given Prove a^3 + b^3 > 2b^3 if a,b,c are in hp

  • So a,b,c are in h.p A.M > G.M > h.M
  • Now b is harmonic mean of a and c
  • So G.M of a and c will be √ac
  • So √ac  >  b or (√ac)^n > b^n
  • Now a^n, c^n  
  • So A.M will be a^n + c^n / 2  
  • G. M will be √a^n x c^n
  •                 = (√ac)^n
  • Now a^n + c^n / 2 > (√ac)^n  > b^n
  • Therefore a^n + c^n / 2 > b^n
  • Now a^n + c^n > 2 b^n
  • Now n belongs to natural numbers.
  • Now we have a^3 + c^3 > 2 b^3

Reference link will be

https://brainly.in/question/4645111

Similar questions