Math, asked by khushi1787, 1 year ago

prove: (a+b)^2= (a-b)^2+4ab

Answers

Answered by Anonymous
2
LHS
 =  {(a + b)}^{2}  \\  =  {a }^{2}  +  {b}^{2}  + 2ab
RHS
 =   {(a - b)}^{2}  + 4ab \\  =  {a }^{2}  +  {b}^{2}  - 2ab + 4ab \\  =  {a}^{2}  +  {b}^{2}  + 2ab
LHS=RHS
Hence proved
Answered by MrThakur14Dec2002
8
SOLUTION...

(a+b)^2 = a^2 + b^2 + 2ab................... eq (1.)

(a-b)^2 = a^2 + b^2 - 2ab ...................... eq (2.)

subtracting eq (2.) from eq (1.)
we get,
(a+b)^2 - (a-b)^2 = 2ab + 2ab
(a+b)^2 = 4ab + (a-b)^2
(a+b)^2 = (a-b)^2 + 4ab.
HENCE, PROVED.

☆☆☆☆HOPE THIS WILL HELP YOU.....
Similar questions