Prove (a+b)³ = a³ + b³ + 3ab(a+b)
Class 9th.
Answers
Answered by
8
Prove (a+b)³ = a³ + b³ + 3ab(a+b).
Good question,
Here is your perfect answer!
(a+b)³ = (a+b) (a+b)²
= (a+b) (a² + 2ab + b²)
= a(a² + 2ab + b²) + b(a² + 2ab + b²)
= a³ + 2a²b + ab² + a²b + 2ab² + b³
= a³ + b³ + 3a²b + 3ab²
= a³ + b³ + 3ab(a+b).
Answered by
2
I'm assuming you mean "Verify (a+b)³ = a³ + b³ + 3ab(a+b)"
If that's the case, (a+b)³ = (a+b)²(a+b)
Expanding (a+b)² gives you: (a+b)²(a+b) = (a²+2ab+b²)(a+b)
Foiling gives you: a³ + a²b + 2a²b + 2ab² + ab² + b³
= a³ + b³ + 3a²b + 3ab²
= a³ + b³ + 3ab(a+b)
please mark me as brainliest!
If that's the case, (a+b)³ = (a+b)²(a+b)
Expanding (a+b)² gives you: (a+b)²(a+b) = (a²+2ab+b²)(a+b)
Foiling gives you: a³ + a²b + 2a²b + 2ab² + ab² + b³
= a³ + b³ + 3a²b + 3ab²
= a³ + b³ + 3ab(a+b)
please mark me as brainliest!
Similar questions