Math, asked by tuli7, 1 year ago

Prove : (a+b+c)^3 - a^3-b^3-c^3=(a+b)(b+c)(c+a)

Answers

Answered by RoboRefiner
2
LHS
(a+b+c)^3-a^3-b^3-c^3 ={(a+b)+c}^3- a^3-b^3-c^3 =(a+b)^3+c^3+3c(a+b)(a+b+c)-a^3-b^3-c^3 =a^3+b^3+c^3+3ab(a+b)+3c(a+b)(a+b+c)-a^3-b^3-c^3=3ab(a+b)+3c(a+b)(a+b+c)=3(a+b){ab+c(a+b+c)}=3(a+b){ab+ac+bc+c^3}=3(a+b){a(b+c)+c(b+c)} =3(a+b)(b+c)(c+a)
Hence proved

tuli7: thanks bro
tuli7: it helped me a lot
RoboRefiner: Wlcm
RoboRefiner: Plz mark as brainliest
Similar questions