Prove A-(B-C) = (A-B) U (A intersect C) for any sets A,B and C.
How do we prove it without using the Venn diagram?
Answers
A - (B - C) = (A - B) U (A ∩ C)
Proof:
L.H.S. = A - (B - C)
= A - (B ∩ C'), since A - B = A ∩ B'
= A ∩ (B ∩ C')'
= A ∩ {B' U (C')'}, since (A ∩ B)' = A' U B'
= A ∩ (B' U C)
= (A ∩ B') U (A ∩ C)
= (A - B) U (A ∩ C) = R.H.S.
∴ A - (B - C) = (A - B) U (A ∩ C)
This completes the proof.
Some properties of set algebra:
1. A U Φ = A, A ∩ Φ = Φ
2. A U U = U, A ∩ U = A
3. A U A = A, A ∩ A = A
4. A U (B U C) = (A U B) U C
5. A ∩ (B ∩ C) = (A ∩ B) ∩ C
6. A U (B ∩ C) = (A U B) ∩ (A U C)
7. A ∩ (B U C) = (A ∩ B) U (A ∩ C)
8. A U A' = U
9. A ∩ A' = Φ
10. (A U B)' = A' ∩ B'
11. (A ∩ B)' = A' U B'
12. A - B = A ∩ B'
13. A - (B ∩ C) = (A - B) U (A - C)
14. A - (B U C) = (A - B) ∩ (A - C)
15. A Δ B = (A - B) U (B - A)
16. A Δ B = B Δ A
Answer:
Step-by-step explanation:
LHS = A − (B−C)
=A − (B∩C')
=A∩(B∩C')'
=(A∩B')∪(A∩C)
=(A−B)∪(A∩C)
=RHS