Math, asked by Devashish7309, 1 year ago

prove a3+b3=(a+b)(a2-ab+b2)​

Answers

Answered by adityasinghyadav77
19

id of (a+b)^3

a^3 + b^3 + 3a^2b + 3ab^2 = (a+b)^3

a^3 + b^3 = (a+b)^3 -3ab(a+b)

will be an another identity

and

(a+b)(a2-ab+b2)= a^3 + b^3

a^3 -a^2b + ab^2 +a^2b +-ab^2 + b^3

= a^3 + b^3

hence proved

Answered by tkeshav489
1

Step-by-step explanation:

id of (a+b)^3

a^3 + b^3 + 3a^2b + 3ab^2 = (a+b)^3

a^3 + b^3 = (a+b)^3 -3ab(a+b)

will be an another identity

and

(a+b)(a2-ab+b2)= a^3 + b^3

a^3 -a^2b + ab^2 +a^2b +-ab^2 + b^3

= a^3 + b^3

hence proved

Please mark me as the brainliest!!!

Similar questions