Math, asked by vishnu180606, 10 months ago

Prove above identity of trigonometry ​

Attachments:

Answers

Answered by SachinGupta01
3

We have to prove that,

 \\  \sf \implies   \boxed{\dfrac{ \tan \theta }{1 -  \cot \theta }  + \dfrac{ \cot \theta }{1 -  \tan \theta }  = 1 + \tan \theta +  \cot \theta}

Solving LHS,

 \\  \sf \implies  {\dfrac{ \frac{ \sin \theta}{ \cos \theta} }{1 -   \frac{\cos \theta}{\sin \theta} }  + \dfrac{ \frac{\cos \theta}{\sin \theta} }{1 -  \frac{ \sin \theta}{ \cos \theta} }  }

 \\  \sf \implies  {\dfrac{ \frac{ \sin \theta}{ \cos \theta} }{ \frac{\sin \theta - \cos \theta}{\sin \theta} }  + \dfrac{ \frac{\cos \theta}{\sin \theta} }{ \frac{\cos \theta -  \sin \theta}{ \cos \theta} }  }

 \\  \sf \implies \dfrac{ \sin \theta}{ \cos \theta} \times  \dfrac{\sin \theta}{\sin \theta - \cos \theta}   \:  +  \: \dfrac{\cos \theta}{\sin \theta}  \times  \dfrac{\cos \theta}{\cos \theta - \sin \theta}

 \\  \sf \implies \dfrac{ \sin^{2}  \theta}{ \cos \theta(\sin \theta - \cos \theta)}  +  \: \dfrac{\cos ^{2}  \theta}{\sin \theta(\cos \theta - \sin \theta)}

 \\  \sf \implies \dfrac{ \sin^{2}  \theta}{ \cos \theta(\sin \theta - \cos \theta)}   -   \: \dfrac{\cos ^{2}  \theta}{\sin \theta(\sin \theta - \cos \theta)}

 \\  \sf \implies \dfrac{ \sin^{3}  \theta - \cos ^{3}  \theta}{ \cos \theta(\sin \theta - \cos \theta)\sin \theta}

 \\  \sf \implies \dfrac{  \cancel{(\sin  \theta - \cos   \theta)}(\sin^{2}   \theta  +  \cos^{2}\theta + \sin \theta\cos \theta)}{ \cos \theta \cancel{(\sin \theta - \cos \theta)}\sin \theta}

 \\  \sf \implies \dfrac{ {}(\sin^{2}   \theta  + \cos^{2}\theta + \sin \theta\cos \theta)}{ \cos \theta {}\sin \theta}

 \\  \sf \implies \dfrac{ 1 + \sin \theta\cos \theta}{ \cos \theta {}\sin \theta}

 \\  \sf \implies {\dfrac{  1}{ \cos \theta {}\sin \theta}    +   {\dfrac{  \sin \theta\cos \theta}{ \cos \theta {}\sin \theta} }  }

 \\   \implies  \boxed{ \sf{\dfrac{  1}{ \cos \theta {}\sin \theta}    +   1  }}

Solving RHS,

 \\  \sf \implies   { 1 + \tan \theta +  \cot \theta}

 \\  \sf \implies   { 1 + \dfrac{\sin \theta}{\cos  \theta} +   \dfrac{ \cos  \theta}{ \sin  \theta}  }

 \\  \sf \implies   { 1 + \dfrac{\sin^{2}   \theta  +  \cos^{2}\theta}{\cos  \theta\sin  \theta} }

 \\  \sf \implies \boxed{   { 1 + \dfrac{1}{\cos  \theta\sin  \theta} }}

  • LHS = RHS

HENCE PROVED

Attachments:
Similar questions