Math, asked by shreyababu53, 9 days ago

Prove AC : BC - 2: 1​

Attachments:

Answers

Answered by NITESH761
5

Step-by-step explanation:

\rm \large \underline{Given} :-

\rm ∠ PAC = \angle QBC = 90^{\circ}

\rm AP = 4 \: cm

\rm BQ = 2 \: cm

\rm \large \underline{To \: Prove } :-

\rm AC:CB =2:1

\rm \large \underline{Solution}:-

It is given that,

\rm ∠ PAC = \angle QBC = 90^{\circ}

So, by AA similarity ∆PAC ∼ ∆BCQ

Therefore,

\rm \dfrac{AP}{BQ} = \dfrac{AC}{CB}

\rm  \dfrac{AC}{CB} = \dfrac{4}{2}

\rm  \dfrac{AC}{CB} = \dfrac{2}{1}

\rm AC:CB = 2:1

Similar questions