Math, asked by testuser0923755, 1 month ago

Prove algebraically that 2(√(2+√3)) = √6 + √2?

Answers

Answered by Anonymous
15

Topic :-

Square roots

Given to prove :-

2( \sqrt{2 +  \sqrt{3} } ) =  \sqrt{6}  +  \sqrt{2}

Proof !

Take L.H.S

2( \sqrt{ {2}  +  \sqrt{3} )}

 \sqrt{(2 +  \sqrt{3} )2 {}^{2} }

 \sqrt{2 +  \sqrt{3} (4)}

 \sqrt{8 +  4 \sqrt{3} }

 \sqrt{8 +  \sqrt{3 \times 4 {}^{2} } }

 \sqrt{8 +  \sqrt{16 \times 3} }

 \sqrt{8  +  \sqrt{48} }

So, here 48 can be written as 12 × 4

 \sqrt{8  +  \sqrt{4 \times 12} }

 \sqrt{8 +  \sqrt{4} \times  \sqrt{12}  }

 \sqrt{8 + 2 \sqrt{12} }

12 can be written as 2× 6

8 can be written as 2 + 6

 \sqrt{2 + 6 + 2 \sqrt{2 \times 6}  \ }

2 can be written as (√2)² 6 can be written as (√6)²

 \sqrt{( \sqrt{2}) {}^{2}   + ( \sqrt{6}) {}^{2}   + 2 \sqrt{2} \sqrt{6}  }

It is in form of a² + b² + 2ab = (a+b)² So,

 \sqrt{( \sqrt{2} +  \sqrt{6}) {}^{2}   }

 \sqrt{2}  +  \sqrt{6}

So,

2( \sqrt{2 +  \sqrt{3} } ) =  \sqrt{6}  +  \sqrt{2}

Hence proved !

Know more some algebraic identities:-

(a+ b)² = a² + b² + 2ab

( a - b )² = a² + b² - 2ab

( a + b )² + ( a - b)² = 2a² + 2b²

( a + b )² - ( a - b)² = 4ab

( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca

a² + b² = ( a + b)² - 2ab

(a + b )³ = a³ + b³ + 3ab ( a + b)

( a - b)³ = a³ - b³ - 3ab ( a - b)

If a + b + c = 0 then a³ + b³ + c³ = 3abc

Answered by jaswasri2006
1

 \large \tt 2( \sqrt{2 +  \sqrt{3} })  =  \sqrt{6}  +  \sqrt{2}

 \sf ( \cancel{ \sqrt{2} )( \sqrt{2}} )( \sqrt{2}  +  \sqrt{3} ) =  \sqrt{6}  + \cancel{  \sqrt{2} }

 \sf as \:  \: per \:  \:  \: binomial \:  \: expansion \:  \:

 \large  \tt \:  \sqrt{6}  =  \sqrt{6}

  • Hence Proved

Similar questions