Math, asked by Krishnashenoi, 1 year ago

Prove (b^2-c^2)/a*cosA + (c^2-a^2)/b*cosB + (a^2-b^2)/c*cosC =0

Answers

Answered by Pitymys
3

In a triangle  \Delta ABC , the cosine law is

 \cos A=\frac{b^2+c^2-a^2}{2bc} \\<br />\cos B=\frac{c^2+a^2-b^2}{2ca} \\<br />\cos C=\frac{a^2+b^2-c^2}{2ab}

Now,

 \frac{(b^2-c^2)}{a} \cos A=\frac{(b^2-c^2)}{a} \frac{b^2+c^2-a^2}{2bc}\\<br />\frac{(b^2-c^2)}{a} \cos A=\frac{b^4-c^4-a^2(b^2-c^2)}{2abc}

Similarly,


Similar questions