Math, asked by meghana4578, 6 days ago

prove by mathematica
by mathematical indution that 1+2+_____+n=[m(n+1)÷2]​

Answers

Answered by vijisekar
0

Step-by-step explanation:

the explanation is given above

Attachments:
Answered by mathdude500
5

Basic Concept Used :-

Principal of Mathematical Induction :-

The technique involves two steps to prove a statement, as stated below −

  • Step 1 (Base step) − It proves that a statement is true for the initial value say n = 1.

  • Step 2(Inductive step) − It proves that if the statement is true for the kth iteration (or number k), then it is also true for (k+1)th iteration ( or number k+1).

\large\underline{\sf{Solution-}}

 \sf \: Let  \: P(n) : 1 + 2 + 3  +  -  -  -  + n = \dfrac{ n( n + 1)}{2}

Step :- 1

\rm :\longmapsto\:For \:  n = 1

\rm :\longmapsto\:1 = \dfrac{1(1 + 1)}{2}  = \dfrac{2}{2}  = 1

\bf\implies \:P(n) \: is \: true \: for \: n \:  =  \: 1

Step :- 2

\rm :\longmapsto\:Assume \: that \: P(n) \: is \: true \: for \: n  = k \: where \: k \in \: N

\rm :\longmapsto\:1 + 2 + 3  +  -  -  -  + k = \dfrac{ k( k + 1)}{2}  -  - (1)

Step :- 3

\rm :\longmapsto\:For \: n = k + 1 \: we \: have \: to \: prove \:P(n) \: is \: true

\rm :\longmapsto\:1 + 2 + 3  +  -  -  -  + k + (k + 1) = \dfrac{ (k + 1)( k + 2)}{2}

 \bf \: Consider  \: LHS

\rm :\longmapsto\:1 + 2 + 3  +  -  -  -  + k + (k + 1)

\rm :\longmapsto\: = \dfrac{k(k + 1)}{2}  + (k + 1) \:  \:  \:  \{ \: using \: (1) \}

\rm :\longmapsto\: =  \: (k + 1)\bigg(\dfrac{k}{2}   + 1\bigg)

\rm :\longmapsto\: =  \: (k + 1)\bigg(\dfrac{k + 2}{2}  \bigg)

\rm :\longmapsto\: =  \: \dfrac{(k + 1)(k + 2)}{2}

\rm :\longmapsto\: =  \: RHS

\bf\implies \:P(n) \: is \: true \: for \: n \:  = k + 1

Hence,

\rm :\longmapsto\:By \:  the  \: process \:  of  \: PMI \:

\bf:\longmapsto\:1 + 2 + 3  +  -  -  -  + n = \dfrac{ n( n + 1)}{2}

Similar questions