Math, asked by shyladamu, 1 year ago

Prove by mathematical induction 3^n<4^n , n€N

Answers

Answered by saloni46385
0

let \: p(n) = 3 {}^{n } &lt; 4 {}^{n} \\ for \: n = 1 \\ 3 &lt; 4 \\ so \: p(n) \: is \: true \: for \: n = 1 \\ let \: p(n) \: is \: true \: for \: n = k \\ \\ p(k) = 3 {}^{k}  &lt; 4 {}^{k }  \:  \:  \:  \:  \:  \:  \: eq.1\\ now \: we \: shall \: prove \: that \: p(n) \: is \: true \: for \: n = k + 1 \\ 3 {}^{k + 1 }  &lt; 4 {}^{ k+ 1}  \\ multiplying \: eq.1 \: by \: 3\:  \\ 3 {}^{k}  \times 3 &lt; 4 {}^{ k}  \times 3 \\ 3 {}^{k + 1}  &lt; 4 {}^{k}  \times 3 &lt; 4 {}^{k + 1}   = 4 {}^{k}  \times 4 \\  \\ hence \:  \\ 3 {}^{k + 1}  &lt; 4 {}^{k + 1} \\ so \: p(n) \: is \: true \: for \: n = k + 1 \\ then \: by \: pmi \: p(n) \: is \: true \: for \: all \: n \: belongs \: to \: n \:  \:  \:  \:
Similar questions