Math, asked by tjfkroerhtntm, 4 days ago

Prove by mathematical induction.
4ⁿ ≥ (1 + 3n)
for n ≥ 1

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Let assume that

\rm \: P(n): \:  {4}^{n} \geqslant 1 + 3n \\

Step :- 1 For n = 1

\rm \: P(1): \:  {4}^{1} \geqslant 1 + 3 \times 1 \\

\rm\implies \:P(1):4 = 4 \\

\rm\implies \:P(1) \: is \: true \: for \: n = 1 \\

Step :- 2 Let assume that P(n) is true for n = k, where k is some natural number.

\rm \: P(k): \:  {4}^{k} \geqslant 1 + 3k -  -  - (1) \\

Step :- 3 Now, we have to prove that P(n) is true for n = k + 1

\color{blue}\rm \: P(k + 1): \:  {4}^{k + 1} \geqslant 1 + 3(k + 1)  \\

Now, from equation (1), we have

\rm \: \:  {4}^{k} \geqslant 1 + 3k \\

On multiply by 4, on both sides we get

\rm \: \:  4 \times {4}^{k} \geqslant 4(1 + 3k) \\

\rm \: \:  {4}^{k + 1} \geqslant 4 + 12k \\

can be rewritten as

\rm \: \:  {4}^{k + 1} \geqslant 1 + 3 + 3k + 9k   >  1 + 3 + 3k  \\

\rm \: \:  {4}^{k + 1}   \geqslant 1 + 3(1 + k)  \\

\rm\implies \:\rm \: \:  {4}^{k + 1}   \geqslant 1 + 3(k + 1)  \\

\rm\implies \:P(n) \: is \: true \: for \: n = k + 1 \\

Hence, By the Principle of Mathematical Induction,

\color{green}\rm\implies \:\rm \: \:  {4}^{n} \geqslant 1 + 3n \:  \:  \forall \: n \geqslant 1 \\

Similar questions