Math, asked by rinsha67, 1 month ago

Prove by mathematical induction (cosθ + i sinθ)n = (cosnθ +isinnθ) , where i = √-1​

Answers

Answered by senboni123456
11

Answer:

Step-by-step explanation:

\tt{Let\,\,P_{n}:(cos(\theta)+i\,sin(\theta))^n=cos(n\theta)+i\,sin(n\theta)}

For n=1, P_{1} is true.

For n=2,

\sf{(cos(\theta)+i\,sin(\theta))^2=cos^2(\theta)-sin^2(\theta)+i\cdot\,2sin(\theta)cos(\theta)=cos(2\theta)+i\,sin(2\theta)}

So, P_{2}, is true

Let P_{k}, is true

Then, P_{k+1}, must be true

Now,

\tt{(cos(\theta)+i\,sin(\theta))^{k+1}}

\tt{=(cos(\theta)+i\,sin(\theta))^{k}\cdot\,(cos(\theta)+i\,sin(\theta))}

\tt{=(cos(k\theta)+i\,sin(k\theta))\cdot\,(cos(\theta)+i\,sin(\theta))}

\tt{=cos(k\theta)cos(\theta)+i\,sin(k\theta)(cos(\theta)+i\,cos(k\theta)sin(\theta)-sin(k\theta)sin(\theta)}

\tt{=\{cos(k\theta)cos(\theta)-sin(k\theta)sin(\theta)\}+i\,\{sin(k\theta)(cos(\theta)+i\,cos(k\theta)sin(\theta)\}}

\tt{=cos(k\theta+\theta)+i\,sin(k\theta+\theta)}

\tt{=cos(k+1)\theta+i\,sin(k+1)\theta}

So, P_{k+1}, is true, whenever P_{k} is true.

Answered by mathdude500
15

\large\underline{\sf{Solution-}}

Let assume that,

  \red{\rm :\longmapsto\:P(n):   {(cos\theta + isin\theta)}^{n} = cos \: n\theta + isin \: n\theta}

Step :- 1 For n = 1

\rm :\longmapsto\: {(cos \: \theta + i \: sin \: \theta)}^{1} = cos\theta + i \: sin\theta

\rm :\longmapsto\: {cos \: \theta + i \: sin \: \theta} = cos\theta + i \: sin\theta

\bf\implies \:\boxed{ \tt{ \: P(n) \: is \: true \: for \: n = 1 \: }}

Step :- 2 Assume that P (n) is true for n = k, where k is some natural number

So,

  \red{\rm :\longmapsto\:{(cos\theta + isin\theta)}^{k} = cos \: k\theta + isin \: k\theta}

Step :- 3 Now, we have to prove that P(n) is true for n = k + 1

\rm :\longmapsto\:P(k + 1)

\rm \:  =  \: {(cos\theta + i \: sin\theta)}^{k + 1}

can be rewritten as

\rm \:  =  \: {(cos\theta + i \: sin\theta)}^{k}  \times (cos\theta + i \: sin\theta)

\rm \:  =  \:(cosk\theta + i \: sink\theta)(cos\theta + i \: sin\theta)

\rm \:  =  \:cosk\theta \: cos\theta + i \: cosk\theta \: sin\theta + i \: sink\theta \: cos\theta +  {i}^{2} sink\theta \: sin\theta

\rm \:  =  \:cosk\theta \: cos\theta + i (\: cosk\theta \: sin\theta + sink\theta \: cos\theta)  -  sink\theta \: sin\theta

can be rewritten as

\rm \:  =  \:cosk\theta \: cos\theta -  sink\theta \: sin\theta + i (\: cosk\theta \: sin\theta + sink\theta \: cos\theta)

We know

\boxed{ \tt{ \: cos(x + y) = cosxcosy - sinxsiny \:  \: }}

and

\boxed{ \tt{ \: sin(x + y) = sinxcosy + sinycosx \:  \: }}

So, using this

\rm \:  =  \:cos(k\theta + \theta) + i \: sin(k\theta + \theta)

\rm \:  =  \:cos(k + 1)\theta + i \: sin(k + 1)\theta

\bf\implies \:\boxed{ \tt{ \: P(n) \: is \: true \: for \: n = k + 1 \: }}

Hence, By the process of Principal of Mathematical Induction

\red{\boxed{ \tt{ \: \:{(cos\theta + isin\theta)}^{n} = cos \: n\theta + isin \: n\theta}}}

Similar questions