Math, asked by Anonymous, 6 months ago

Prove by mathematical induction
 \frac{1}{1.2}  +  \frac{1}{2.3}  + .... +  \frac{1}{3(n + 1)}  =  \frac{n}{n + 1}

Answers

Answered by Anonymous
65

Given Sequence,

 \sf P(n) : \dfrac{1}{1.2} + \dfrac{1}{2.3} + .... + \dfrac{1}{n(n + 1)} = \dfrac{n}{n + 1}

Let check the validity of the sequence for n = 1.

LHS : 1/1 × 2 = 1/2

RHS : 1/( 1 + 1) = 1/2

Therefore, P(1) is true.

Say the sequence is valid for k, where k belongs to natural numbers.

 \sf P(k) : \dfrac{1}{1.2} + \dfrac{1}{2.3} + .... + \dfrac{1}{k(k + 1)} = \dfrac{k}{k + 1} ----------(1)

To prove that P(k + 1) is true, where k + 1 is a natural number.

 \sf P(k + 1) : \dfrac{1}{1.2} + \dfrac{1}{2.3} + .... + \dfrac{1}{(k + 1)(k + 2)} = \dfrac{k + 1}{k + 2}

LHS :

 \sf  \bigg(  \dfrac{1}{1.2} + \dfrac{1}{2.3} + ....  \bigg)+ \dfrac{1}{(k + 1)(k + 2)}  \\  \\ \longrightarrow \sf \:  \dfrac{k}{k + 1} +  \dfrac{1}{(k + 1)(k + 2)}  \\  \\  \longrightarrow \sf \:  \dfrac{1}{k + 1}   \bigg(k +  \dfrac{1}{k + 2}  \bigg) \\  \\  \longrightarrow \sf \:  \dfrac{(k + 1) {}^{2} }{(k + 1)(k + 2)}  \\  \\  \longrightarrow \sf \dfrac{k + 1}{k + 2}  \longrightarrow \: RHS

By Principle of Mathematical Induction, P(n) is true for all values of natural numbers.

Answered by Anonymous
12

\huge\underline\mathbb\color{blue}{Refer\: Attachment}

Attachments:
Similar questions