Prove by Mathematical Induction that 1! + (2 × 2!) + (3 × 3!) + … + (n × n!) = (n + 1)! – 1
Answers
Let p(n) = 1! + (2 × 2 !) + (3 × 3!) +…. .+ (n × n!) = (n + 1)! – 1
Step 1:
First let us verify the result for n = 1
P(1) = 1! = (1 + 1)! – 1
P(1) = 1! = 2! – 1
P(1) = 1 = 2 – 1 = 1
∴ We have verified the result for n = 1.
Step 2:
Let us assume that the result is true for n = k
P(k) = (1 × 1 !) + (2 × 2!) + (3 × 3!) + …………. + (k × k!) = (k + 1)! – 1
Step 3:
Let us prove the result for n = k + 1
P(k + 1)=(1 × 1!) + (2 × 2!) + (3 × 3!) + ………….. + (k × k!) + ((k + 1) × (k + 1)!)
P(k + 1) = P(k) + ((k + 1) × (k + 1)!)
P(k + 1) = (k + 1)! – 1 + (k + 1) × (k + 1)!
= (k + 1)! + (k + 1) (k + 1)! – 1
= (k + 1)! (1 + k + 1) – 1
= (k + 1)! (k + 2) – 1
= (k + 2)! – 1
P(k + 1) = ((k + 1) + 1)! – 1
This implies P (k + 1) is true.
∴ Thus, we have proved the result for n = k + 1.
Hence by the principle of mathematical induction, the result is true for all natural numbers n.
(1 × 1!) + (2 × 2!) + (3 × 3!) + …………… + (n × n!) = (n + 1)! – 1
is true for all natural numbers n.