Math, asked by Anonymous, 6 months ago

prove by mathematical induction that

Attachments:

Answers

Answered by Anonymous
17

To prove that :

 \sf \: p(n) : 1.2 + 2.3 + 3.4 +  \cdots \: n(n + 1) =  \dfrac{ n(n + 1)(n + 2)}{3} for \: all \: natural \: numbers

Let's check the validity of the sequence for n = 1.

LHS : 1 × 2 = 2

RHS : 1(1+1)(1+2)/3 = 1 × 2 = 2

True for P(1).

Now, let us assume that the sequence holds good for P(k) for all values of k, where k belongs to natural numbers.

 \sf \: p(k) : 1.2 + 2.3 + 3.4 +  \cdots \: k(k + 1) =  \dfrac{ k(k + 1)(k + 2)}{3}  -  -  -  -  -  -  - (1)

We have to prove that the sequence is valid for P(k + 1), where k + 1 belongs to natural numbers.

 \sf \: p(k + 1) : 1.2 + 2.3 + 3.4 +  \cdots \: (k + 1)(k + 2) =  \dfrac{ (k + 1)(k + 2)(k + 3)}{3}

LHS.

 \sf \: 1.2 + 2.3 + 3.4 +  \cdots \: (k + 1)(k + 2)  \\  \\  \longrightarrow \sf \:  \{1.2 + 2.3 + 3.4  \cdots\} + (k + 1)(k + 2) \:  \\  \\  \longrightarrow \sf \: \dfrac{ k(k + 1)(k + 2)}{3} + (k + 1)(k + 2) \:  \:  \:  |from \: (1)|  \\  \\ \longrightarrow \sf \:(k + 1)(k + 2)  \bigg[ \dfrac{ k}{3} + 1 \bigg] \\  \\   \longrightarrow \sf\dfrac{ (k + 1)(k + 2)(k + 3)}{3}

Hence, proved.

By Principle of Mathematical Induction, P(n) is true for all natural numbers.

Similar questions