Math, asked by eziolisavera, 3 months ago

prove by mathematical induction that the sum of the first odd integers is n2

Answers

Answered by mathdude500
6

\large\underline\purple{\bold{Solution :-  }}

\tt \: Let  \: P(n)  : 1 + 3 + 5 + .... + (2n - 1) =  {n}^{2}

☆ Step :- 1 For n = 1, we get

\tt \:  \longrightarrow \: 1 =  {1}^{2}  = 1

\tt\implies \:P(n) \: is \: true \: for \: n \:  =  \: 1

☆ Step :- 2 For n = k, let assume that P(n) is true

\tt \:  \longrightarrow \:1 + 3 + 5 + ... + (2k - 1) =  {k}^{2}  -  - (i)

☆ Step :- 3 We have to prove that, P(n) is true for n = k + 1

\tt \: 1 + 3 + 5 + ... + (2k - 1) + (2(k + 1) - 1) =  {(k + 1)}^{2}

▪︎ Consider LHS

\tt \:  \longrightarrow \: 1 + 3 + 5 + ....  + (2k - 1)+ (2k + 1)

\tt \:  \longrightarrow \:  {k}^{2}  + 2k + 1 \:  \:  \:  \:  \{using \: (i) \}

\tt \:  \longrightarrow \:  {(k + 1)}^{2}

\tt\implies \:P(n) \: is \: true \: for \: n \:  = k + 1

\tt \:   \therefore \: by  \: the  \: process \:  of  \: PMI \:

\tt\implies \: \boxed{ \purple{ \bf \: 1 + 3 + 5 + .... + (2n - 1) =  {n}^{2} }}

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

Similar questions