Math, asked by ganeshmn7592, 1 year ago

Prove by PMI 3.2^2 +3^2.2^3 + 3^3.2^4 +----+ 3^n.2^n+1 = 12/5(6^n -1)

Answers

Answered by Pitymys
48

We can see that, when  n=1 ,  LHS=3.2^2=12\\<br />RHS=\frac{12(6^1-1)}{5} =12

The given sum is true for  n=1

Let the given sum is true for  n=m . Then

 S(m)=3.2^2+3^2.2^3+...+3^m.2^{m+1}=\frac{12(6^m-1)}{5}

Now ,.

 S(m+1)=3.2^2+3^2.2^3+...+3^m.2^{m+1}+3^{m+1}.2^{m+2}=\frac{12(6^m-1)}{5} +3^{m+1}.2^{m+2}\\<br />S(m+1)=\frac{12(6^m-1)}{5} +12.6^{m}\\<br />S(m+1)=12\frac{(6^m-1+5.6^m)}{5} \\<br />S(m+1)=12\frac{(6^m-1+(6-1).6^m)}{5} \\<br />S(m+1)=12\frac{(6^{m+1}-1)}{5} \\<br />

Which is true. So if the sum is true for  n=m , then the sum is true for  n=m+1 . Thus by the principle of mathematical induction, the proof is complete.


abhi178: nice
Similar questions