Math, asked by hansika329, 9 months ago

Prove :

cos θ/(1 - tan θ) + sin θ/(1 - cot θ)  =  sin θ + cos θ

Answers

Answered by Anonymous
2

Solution :

Let A = cos θ/(1 - tan θ) + sin θ/(1 - cot θ) and

B = sin θ + cos θ

A = cos θ/{1 - (sin θ/cos θ)} + sin θ/{1 - (cos θ/sin θ)}

A = cos2θ/(cos θ - sin θ) + sin2θ/(sin θ - cos θ)

A = cos2θ/(cos θ - sin θ) - sin2θ/(cos θ - sin θ)

A = (cos2θ - sin2θ) / (cos θ - sin θ)

A = [(cos θ + sin θ)(cos θ - sin θ)] / (cos θ - sin θ)

A = (cos θ + sin θ)

A = B (Proved)

Similar questions