Prove :
cos θ/(1 - tan θ) + sin θ/(1 - cot θ) = sin θ + cos θ
Answers
Answered by
2
Solution :
Let A = cos θ/(1 - tan θ) + sin θ/(1 - cot θ) and
B = sin θ + cos θ
A = cos θ/{1 - (sin θ/cos θ)} + sin θ/{1 - (cos θ/sin θ)}
A = cos2θ/(cos θ - sin θ) + sin2θ/(sin θ - cos θ)
A = cos2θ/(cos θ - sin θ) - sin2θ/(cos θ - sin θ)
A = (cos2θ - sin2θ) / (cos θ - sin θ)
A = [(cos θ + sin θ)(cos θ - sin θ)] / (cos θ - sin θ)
A = (cos θ + sin θ)
A = B (Proved)
Similar questions