Math, asked by midnightrider3105, 1 year ago

prove cos^2theta(1+tan^2theta)=1​


Anonymous: Mark my Ans as brainlist if it helps you!:)

Answers

Answered by Anonymous
3

Given \:  \: Question \:  \: Is \:  \: \\  \\  \cos {}^{2} (x)   \times (1 +  \tan {}^{2} (x))  = 1 \\  \\ LH S \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \cos {}^{2} (x)  \times (1 +  \tan {}^{2} (x) ) \\  \\  \cos {}^{2} (x)  \times  \sec {}^{2} (x)  \\  \\  \cos {}^{2} (x)  \times  \frac{1}{ \cos {}^{2} (x) }  \\  \\  = 1 \:  \: hence \:  \: proved \\  \\ Note \:  \:  \\  \\ 1) \:  \:  \: 1 +  \tan {}^{2} (x)  =  \sec {}^{2} (x)  \\  \\ 2) \:  \:  \:  \sec {}^{2} (x)  =  \frac{1}{ \cos {}^{2} (x) }

Answered by 1518savitasingh
1

Cos^2 theta (1+tan^2theta)=1

LHS

= Cos^2theta×(sec^2theta)

=1/sec^theta ×sec^2theta

=1

LHS=RHS

( 1+tan^2theta= sec^2theta)

Cos^2theta= 1/sec^2theta)

Similar questions