Math, asked by durvesh761, 1 year ago

prove cos(90-theta)sec (90-theta)tan theta ÷cosec (90-theta)sin (90-theta)cot (90-theta) + tan (90-theta)÷cot theta = 2

Answers

Answered by swasty
146
HI, this is the answer of me
Attachments:
Answered by pinquancaro
44

Answer and explanation:

To prove : \frac{\cos(90-\theta)\sec (90-\theta)\tan \theta }{\csc (90-\theta)\sin (90-\theta)\cot (90-\theta)}+\frac{\tan (90-\theta)}{\cot \theta}=2

Proof :

Taking LHS,

=\frac{\cos(90-\theta)\sec (90-\theta)\tan \theta }{\csc (90-\theta)\sin (90-\theta)\cot (90-\theta)}+\frac{\tan (90-\theta)}{\cot \theta}

Applying property of trigonometry,

\sin (90-\theta)=\cos \theta\\\cos(90-\theta)=\sin\theta\\\sec (90-\theta)=\csc\theta\\\csc (90-\theta)=\sec\theta\\\cot (90-\theta)=\tan\theta\\\tan (90-\theta)=\cot\theta

=\frac{\sin\theta\csc\theta\tan \theta }{\sec\theta\cos\theta\tan\theta}+\frac{\cot\theta}{\cot \theta}

We know, \csc\tehta=\frac{1}{\sin\theta},\ \sec\tehta=\frac{1}{\cos\theta}

=\frac{\sin\theta\times \frac{1}{\sin\theta}\times \tan \theta }{\frac{1}{\cos\theta}\times \cos\theta\times \tan\theta}+\frac{\cot\theta}{\cot \theta}

=\frac{1}{1}+1

=1+1

=2

LHS=RHS

Hence proved.

Similar questions