Math, asked by palmalfoy, 1 year ago

Prove:
cos theta/1+sin theta + cos theta/1-sin theta = 2sec theta

Answers

Answered by ihrishi
69

Step-by-step explanation:

 \frac{cos \theta}{1 +sin \theta}  +  \frac{cos \theta}{1  - sin \theta}  = 2 \: sec \theta \:  \\ LHS = \frac{cos \theta}{1 +sin \theta}  +  \frac{cos \theta}{1  - sin \theta} \:  \\  = \frac{cos \theta(1  - sin \theta) + cos \theta(1   + sin \theta)}{(1 +sin \theta)(1  - sin \theta)} \\   = \frac{cos \theta  -cos \theta sin \theta + cos \theta   + cos \theta sin \theta }{1  -  {sin}^{2} \theta }  \:  \\  =  \frac{2 \: cos \theta}{ {cos}^{2}  \theta}  \\ =  \frac{2 }{ {cos}  \theta}  \\  = 2 \: sec \theta \\  = RHS \\ thus \: proved.

Answered by pinquancaro
66

Answer and explanation:

To prove : \frac{\cos\theta}{1+\sin\theta}+\frac{\cos\theta}{1-\sin\theta}=2\sec\theta

Proof :

Taking LHS,

LHS=\frac{\cos\theta}{1+\sin\theta}+\frac{\cos\theta}{1-\sin\theta}

LHS=\frac{\cos\theta(1-\sin\theta)+\cos\theta(1+\sin\theta)}{(1+\sin\theta)(1-\sin\theta)}

LHS=\frac{\cos\theta-\cos\theta\sin\theta+\cos \theta+\cos \theta\sin \theta}{1^2-\sin^2\theta}

LHS=\frac{\cos\theta+\cos\theta}{1-\sin^2\theta}

LHS=\frac{2\cos\theta}{\cos^2\theta}

LHS=\frac{2}{\cos\theta}

LHS=2\sec\theta

LHS=RHS

Hence proved.

Similar questions