Math, asked by shubham280206, 19 days ago

prove cos theta cos theta/2 -cos 3 theta cos 9theta/2 = sin 4 theta * sin 7 theta/2

Answers

Answered by mathdude500
6

Question :- Prove that

\rm \: cos\theta  \: cos\dfrac{\theta }{2} - cos3\theta  \: cos\dfrac{9\theta }{2}  = sin4\theta  \: sin\dfrac{7\theta }{2} \\

\large\underline{\sf{Solution-}}

Consider LHS

\rm \: cos\theta  \: cos\dfrac{\theta }{2} - cos3\theta  \: cos\dfrac{9\theta }{2}

can be rewritten as

\rm \:  = \dfrac{1}{2}  \bigg(2\: cos\theta  \: cos\dfrac{\theta }{2} -2 cos3\theta  \: cos\dfrac{9\theta }{2}\bigg)  \\

We know,

\boxed{\rm{  \:2 \: cosx \: cosy \:  =  \: cos(x + y) + cos(x - y) \:  \: }} \\

So, using this result, we get

\rm \:=\:\dfrac{1}{2}\bigg[cos\bigg(\theta  + \dfrac{\theta }{2} \bigg)  + cos\bigg(\theta  - \dfrac{\theta }{2} \bigg)  - cos\bigg(3\theta  + \dfrac{9\theta }{2} \bigg)  - cos\bigg(3\theta  - \dfrac{9\theta }{2}\bigg) \bigg] \\

\rm \:=\: \dfrac{1}{2}\bigg[cos\dfrac{3\theta }{2} + cos\dfrac{\theta }{2} - cos\dfrac{15\theta }{2} - cos\bigg( - \dfrac{3\theta }{2} \bigg) \bigg] \\

\rm \:=\: \dfrac{1}{2}\bigg[cos\dfrac{3\theta }{2} + cos\dfrac{\theta }{2} - cos\dfrac{15\theta }{2} - cos \dfrac{3\theta }{2}\bigg] \\

\rm \:=\: \dfrac{1}{2}\bigg[ cos\dfrac{\theta }{2} - cos\dfrac{15\theta }{2} \bigg] \\

We know,

\boxed{\rm{  \:cosx - cosy =  2sin\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{y - x}{2} \bigg] \: }} \\

So, using this result, we get

\rm \:  =  \: \dfrac{1}{2} \times 2sin\bigg[\dfrac{\dfrac{\theta }{2} + \dfrac{15\theta }{2}}{2} \bigg]sin\bigg[\dfrac{\dfrac{15\theta }{2} - \dfrac{\theta }{2}}{2} \bigg] \\

\rm \:  =  \: sin\dfrac{16\theta }{4} \: sin\dfrac{14\theta }{4}\\

\rm \:  =  \: sin4\theta  \: sin\dfrac{7\theta }{2}\\

Hence,

\rm\implies \:\boxed{\rm{  \:\rm \: cos\theta  \: cos\dfrac{\theta }{2} - cos3\theta  \: cos\dfrac{9\theta }{2}  = sin4\theta  \: sin\dfrac{7\theta }{2} \: }} \\

\rule{190pt}{2pt}

\begin{gathered} \colorbox{powderblue}{ \boxed{ \begin{array}{l} \underline{\underline{ \color{orang} \text{ \bf \: Additional \: information \:  }}} \end{array}}}\end{gathered}

\boxed{\rm{  \:2 \: sinx \: cosy \:  =  \: sin(x + y) + sin(x - y) \: }} \\

\boxed{\rm{  \:2 \: sinx \: siny \:  =  \: cos(x  -  y) - cos(x - y) \: }} \\

\boxed{\rm{  \:cosx  +  cosy =  2cos\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg] \: }} \\

\boxed{\rm{  \:sinx  +  siny =  2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg] \: }} \\

\boxed{\rm{  \:sinx -  siny =  2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg] \: }} \\

Similar questions