Math, asked by yashashianay, 1 month ago

prove: cos thita - sin thita/cos thita = 1 - tan thita​

Answers

Answered by Anonymous
5

To prove :-

  {\dashrightarrow \dfrac{ \cos \theta -  \sin \theta}{ \cos \theta} = 1 -  \tan \theta}

Solution :-

  {\dashrightarrow \dfrac{ \cos \theta -  \sin \theta}{ \cos \theta} = 1 -  \tan \theta}

  {\dashrightarrow  \bigg(\dfrac{ \cos \theta }{ \cos \theta} -  \dfrac{ \sin \theta}{ \cos \theta}  \bigg)= 1 -  \tan \theta}

  {\dashrightarrow  \bigg( \cancel\dfrac{ \cos \theta }{ \cos \theta} -  \dfrac{ \sin \theta}{ \cos \theta}  \bigg)= 1 -  \tan \theta}

  {\dashrightarrow  \bigg(1 -  \dfrac{ \sin \theta}{ \cos \theta}  \bigg)= 1 -  \tan \theta}

» Apply formula sin A/cos A= tan A

  {\dashrightarrow  (1 -  \tan \theta)= 1 -  \tan \theta}

  {\dashrightarrow   \boxed{1 -  \tan \theta= 1 -  \tan \theta}}

» LHS = RHS

Hence proved

Answered by sandy1816
1

 \frac{cos \theta - sin \theta}{cos \theta}  \\  =  \frac{cos \theta}{cos \theta}  -  \frac{sin \theta}{cos \theta}  \\  = 1 - tan \theta

Similar questions