prove:cos²∅-tan²∅=cosec²∅-sec²∅.
Answers
Answered by
4
Step-by-step explanation:
LHS = cot²θ - tan²θ
We know from Trigonometric identities ,
cosec²α - cot²α = 1 ⇒cot²α = cosec²α - 1
sec²α - tan²α = 1 ⇒tan²α = sec²α - 1
Hence, LHS = (cosec²θ - 1) - (sec²θ - 1)
= cosec²θ - 1 - sec²θ + 1
= cosec²θ - sec²θ =
LHS = RHS
Hence, proved:
Answered by
6
Step-by-step explanation:
LHS = cot²θ - tan²θ
We know from Trigonometric identities ,
cosec²α - cot²α = 1 ⇒cot²α = cosec²α - 1
sec²α - tan²α = 1 ⇒tan²α = sec²α - 1
Hence, LHS = (cosec²θ - 1) - (sec²θ - 1)
= cosec²θ - 1 - sec²θ + 1
= cosec²θ - sec²θ = RHS
LHS = RHS
Hence, proved:
Similar questions