Prove : cos²2x - cos²6x = sin4x sin8x
Answers
Step-by-step explanation:
Proof :-
On taking LHS :-
Cos² 2X - Cos² 6X
=> (Cos 2X)² - (Cos 6X)²
We know that
(a+b)(a-b) = a²-b²
Where, a = Cos 2X and b = Cos 6X
=>(Cos 2X+Cos 6X)(Cos 2X - Cos 6X) --------- (1)
We know that
Cos A + Cos B
= 2 Cos (A+B)/2 Cos (A-B)/2
Then ,Cos 2X + Cos 6X becomes
=2 Cos (2X+6X)/2 Cos (2X-6X)/2
Where , A = 2X and B = 6X
= 2 Cos (8X/2) Cos (-4X)/2
= 2 Cos 4X Cos (-2X)
We know that
Cos (-A) = Cos A
Therefore,
Cos 2X+Cos 6X = 2 Cos 4X Cos 2X --------(2)
and
We know that
Cos A - Cos B
= - 2 Sin (A+B)/2 Sin (A-B)/2
Then , Cos 2X - Cos 6X becomes
= -2 Sin (2X+6X)/2 Sin (2X-6X)/2
= -2 Sin(8X/2) Sin (-4X)/2
= - 2 Sin 4X Sin (-2X)
We know that
Sin (-A) = - Sin A
Therefore,
Cos 2X - Cos 6X = -(-2 Sin 4X Sin 2X)
Cos 2X - Cos 6X = 2 Sin 4X Sin 2X ------(3)
On multiplying (2) & (3) then
(Cos 2X+Cos 6X) ( Cos 2X - Cos 6X)
= (2 Cos 4X Cos 2X)(2 Sin 4X Sin 2X)
On rearranging them then
= (2 Sin 4X Cos 4X ) (2 Sin 2X Cos 2X)
On applying the formula
Sin 2A = 2 Sin A Cos A
Where, A = 4X in the first expression and A = 2X in the second expression
= [ Sin 2(4X) Sin 2(2X)]
= Sin 8X Sin 4X
= RHS
=> LHS = RHS
Cos² 2X - Cos² 6X = Sin 8X Sin 4X
Hence, Proved.
Used formulae:-
→ Cos A + Cos B
= 2 Cos (A+B)/2 Cos (A-B)/2
→ Cos A - Cos B
= - 2 Sin (A+B)/2 Sin (A-B)/2
→ Sin (-A) = - Sin A
→ Cos (-A) = Cos A
→ Sin 2A = 2 Sin A Cos A
→ (a+b)(a-b) = a²-b²
Consider, LHS
can be rewritten as
We know,
So, on using this result, we get
Now, we know that,
So, using this result, we get
Hence,
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Short Cut Formula
So, using this result,
Hence,
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Additional Information