Math, asked by aleteacher1112, 1 year ago

Prove (Cos²A)³ - (sin²A)³ = cos2A (1- 1/4 Sin²2A)

Answers

Answered by rishu6845
5

Answer:

plzzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by mysticd
1

Answer:

(cos²A)³-(sin²A)³=cos2A[1-(1/4)sin²2A]

Step-by-step explanation:

LHS = (cos²A)³-(sin²A)³

= (cos²A-sin²A)[(cos²A)²+cos²Asin²A+(sin²A)²]

/* By algebraic identity:

-b³ =(a-b)(+ab+) */

= cos2A[(cos²A)²+2cos²Asin²A+(sin²A)²-sin²Acos²A]

/* cos²A-sin²A = cos2A */

= cos2A[(cos²A+sin²A)²-sin²Acos²A]

= cos2A[1-(4sin²Acos²A)/4]

= cos2A[1-(2sinAcosA)²/4]

=cos2A[1-(1/4)sin²2A]

= RHS

Similar questions