Math, asked by MeghanaRaj887, 3 months ago

Prove :-
cos²x + cos² (x + π/3) + cos² (x - π/3) = 3/2 ​

Answers

Answered by BrainlyTwinklingstar
1

Answer

\sf \dashrightarrow LHS = {cos}^{2} x + {cos}^{2} \bigg(x + \dfrac{\pi}{3} \bigg) + {cos}^{2} \bigg( x - \dfrac{\pi}{3} \bigg)

We know that cos²θ = 1 - sin²θ

\sf \dashrightarrow  {cos}^{2} x + {cos}^{2} \bigg(x + \dfrac{\pi}{3} \bigg) + 1 - {sin}^{2} \bigg( x - \dfrac{\pi}{3} \bigg)

\sf \dashrightarrow {cos}^{2} x + 1 + \bigg[{cos}^{2} \bigg( x + \dfrac{\pi}{3} \bigg) - {sin}^{2} \bigg( x - \dfrac{\pi}{3} \bigg) \bigg]

\sf \dashrightarrow {cos}^{2} x + 1 + \bigg[cos \bigg( x + \dfrac{\pi}{3} + x - \dfrac{\pi}{3} \bigg) - cos \bigg( x + \dfrac{\pi}{3} - x + \dfrac{\pi}{3} \bigg) \bigg]

\sf \dashrightarrow {cos}^{2} x + 1 + \bigg[cos2x.cos \dfrac{2 \pi}{3} \bigg]

\sf \dashrightarrow \dfrac{1 + cos2x}{2} + 1 - \dfrac{1}{2} cos2x \: \: \: \bigg( cos \dfrac{2 \pi}{3} = - \dfrac{1}{2} \bigg)

\sf \dashrightarrow \dfrac{1}{2} + \dfrac{1}{2} cos2x + 1 - \dfrac{1}{2} cos2x

\sf \dashrightarrow \dfrac{3}{2} = RHS

\sf LHS = RHS

\sf \dashrightarrow {cos}^{2} x + {cos}^{2} \bigg(x + \dfrac{\pi}{3} \bigg) + {cos}^{2} \bigg( x - \dfrac{\pi}{3} \bigg) = \dfrac{3}{2}

Similar questions