Prove:
Cos3A.Sin9A - SinA.Cos5A/CosA.cos5A - Sin3A.Sin9A = tan8A
Answers
Answered by
5
Answer:
tan8A
Step-by-step explanation:
L. H. S=cos3A. sin9A-sinA. cos5A/cosA. cos5A -sin3A. sin9A
formula used_2cosAsinB=sin(A+B)-sin(A-B)
=1/2[2cos3A.sin9A-sinA.cos5A/1/2[2cosA.cos5A - sin3A. sin9A
cancellation of 1/2 and 2
=sin(3A+9A)-sin(3A-9A)-sin(A+5A)+sin(A+5A)/cos(A+5A)
+cos(A-5A)-cos(3A-9A)+cos(3A+9A)
=sin12A-sin(-6A)-sin6A-sin(-4A)/cos6A+cos(-4A)-cos(-6A)+cos12A
cancellation of sin6A in numerator and cos4A in denominator
=sin12A-sin4A/cos12A-cos4A
=sin8A/cos8A
=tan8A
=R. H. S
Similar questions