Math, asked by vnjfhhyjbc, 1 year ago

prove cos3Acos2A+sin4AsinA=cosAcos2A

Answers

Answered by boffeemadrid
3

Answer:


Step-by-step explanation:

The given equation is:

cos3Aco2A+sin4AsinA=cosAcos2A

Taking the LHS of the above equation and multiplying throughout with 2, we get

2cos3Acos2A+2sin4AsinA

cos(3A+2A)+cos(3A-2A)+cos(4A-A)-cos(4A+A)

cos5A+cosA+cos3A-cos5A

cosA+cos3A

Now, RHS=cosAcos2A

Multiplying by 2, we get

2cosAcos2A

cos(A+2A)+cos(A-2A)

cos3A+cosA

Hence LHS=RHS.

Similar questions