Math, asked by Srijal2933, 7 months ago

Prove :cos40 - sin 40=root 2 cos 5

Answers

Answered by riya5395
1

Answer:

write sin 40⁰ as cos 50⁰ and apply cosC -cosD=[2sin{(C+D)/2}sin{D-C)/2}].Which will give u %√3sin10⁰ and sin10⁰=cos80⁰. hence proved

Answered by pulakmath007
10

cos 40° - sin 40° = √2 cos 5° is proved

Given :

cos 40° - sin 40° = √2 cos 5°

To find :

To prove the expression

Formula :

We are aware of the Trigonometric identity that

 \displaystyle \sf cos  \: C + cos \: D  =2 \:  cos \frac{C + D}{2}  \: cos \frac{C  -  D}{2}

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

cos 40° - sin 40° = √2 cos 5°

Step 2 of 2 :

Prove the expression

LHS

 = \sf cos {40}^{ \circ}  + sin {40}^{ \circ}

 = \sf cos {40}^{ \circ}  + sin({90}^{ \circ} -  {50}^{ \circ}    )

 = \sf cos {40}^{ \circ}  + cos  {50}^{ \circ}

   \displaystyle \sf = 2 \: cos \frac{ {40}^{ \circ}  + {50}^{ \circ}  }{2} \:  \:  cos \frac{ {40}^{ \circ}   -  {50}^{ \circ}  }{2}

 \sf = 2 \: cos {45}^{ \circ}   cos ( -  {5}^{ \circ}    \: )

 \sf =2 \:  cos {45}^{ \circ}   cos  {5}^{ \circ}    \:

 \displaystyle \sf  =2 \: \times  \frac{1}{ \sqrt{2} }   \times     cos  {5}^{ \circ}    \:

 \displaystyle \sf  = \sqrt{2}   cos  {5}^{ \circ}    \:

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

3. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Similar questions