Prove cos⁴A - cos²A = sin⁴A - sin²A.
Answers
Answered by
15
Solution:
LHS = cos⁴ A - cos² A
= cos²A( cos² A - 1 )
= ( 1 - sin² A )[ -( 1 - cos² A ) ]
= ( 1 - sin² A ) ( - sin² A )
= - sin² A + sin⁴ A
= sin⁴ A - sin² A
= RHS
Hope that this answer will help you✌️
Anonymous:
meina mazak Kia tha
Answered by
10
HERE WE GO!!
Solution:
LHS = cos⁴ A - cos² A
= cos²A( cos² A - 1 )
= ( 1 - sin² A )[ -( 1 - cos² A ) ]
= ( 1 - sin² A ) ( - sin² A )
= - sin² A + sin⁴ A
= sin⁴ A - sin² A = RHS
If it's helpful to you Please mark it as brainliest!!❤
Solution:
LHS = cos⁴ A - cos² A
= cos²A( cos² A - 1 )
= ( 1 - sin² A )[ -( 1 - cos² A ) ]
= ( 1 - sin² A ) ( - sin² A )
= - sin² A + sin⁴ A
= sin⁴ A - sin² A = RHS
If it's helpful to you Please mark it as brainliest!!❤
Similar questions