Math, asked by omkar104, 1 year ago

prove cos6A+ sin6A=1-3 sin2A*cos2A

Answers

Answered by boomishadhamodharan
101
sin6A+cos6A = (sin2A)+ (cos2A)3
                     = (sin2A + cos2A)3 − 3 sin2A cos2A(sin2A + cos2A)  [Since, (a+b)3 = a3 + b3 +3ab(a+b)]
                     = (1)3 − 3 sin2A cos2A(1)  [Since, sin2A + cos2A = 1]
                     =   1 − 3 sin2A cos2A
                     = RHS

Answered by parmesanchilliwack
74

Answer:

To prove:

cos^6A+ sin^6A=1-3 sin^2A.cos^2A

L.H.S.

cos^6A+ sin^6A

=(cos^2A)^3 + (sin^2 A)^3

=(cos^2A+sin^2A)[ (cos^2A)^2-cos^2A\times sin^2A +(sin^2A)^2]

( Because, a³ + b³ = (a+b) (a²-ab+b²) )

=(cos^2A)^2-cos^2A\times sin^2A +(sin^2A)^2

( Because, sin² x + cos²x = 1 )

=(cos^2A)^2-cos^2A\times sin^2A +(sin^2A)^2+ 2 cos^2A .sin^2A - 2 cos^2A .sin^2A

=(cos^2A+sin^2A)^2-3 cos^2A .sin^2A

( Because, a² + 2ab + b² = (a+b)² )

=1-3 cos^2A. sin^2A

= R.H.S.

Hence, proved.

Similar questions