prove cos6A+ sin6A=1-3 sin2A*cos2A
Answers
Answered by
101
sin6A+cos6A = (sin2A)3 + (cos2A)3
= (sin2A + cos2A)3 − 3 sin2A cos2A(sin2A + cos2A) [Since, (a+b)3 = a3 + b3 +3ab(a+b)]
= (1)3 − 3 sin2A cos2A(1) [Since, sin2A + cos2A = 1]
= 1 − 3 sin2A cos2A
= RHS
= (sin2A + cos2A)3 − 3 sin2A cos2A(sin2A + cos2A) [Since, (a+b)3 = a3 + b3 +3ab(a+b)]
= (1)3 − 3 sin2A cos2A(1) [Since, sin2A + cos2A = 1]
= 1 − 3 sin2A cos2A
= RHS
Answered by
74
Answer:
To prove:
L.H.S.
( Because, a³ + b³ = (a+b) (a²-ab+b²) )
( Because, sin² x + cos²x = 1 )
( Because, a² + 2ab + b² = (a+b)² )
= R.H.S.
Hence, proved.
Similar questions
Chemistry,
8 months ago
English,
8 months ago
Computer Science,
8 months ago
English,
1 year ago
English,
1 year ago