Prove - cos6x = 32cos^6x - 48cos^4x + 18cos^2x-1
Answers
Answered by
2
Answer:
Using,
cos2x=2cos
2
x−1
cos3x=4cos
3
x−3cosx
LHS:
cos6x=2cos
2
3x−1
=2(4cos
3
x−3cosx)
2
−1
=2(16cos
6
x+9cos
2
x−24cos
4
x)−1
=32cos
6
x−48cos
4
x+18cos
2
x−1 = RHS
Answered by
0
Answer:
2 cos^2(3x) -1
Explanation:
For *LHS*
cos2(3x) = *2cos^2x -1*
For *RHS*
TAKE 2 COMMON
> 2(16cos^6x - 24cos^4x + 9cos^2x) - 1
APPLY THE PROPERTY OF
(A-B)^2 = (A^2 - 2AB + B^2)
> 2(4cos^3x - 3cos^x)^2 - 1
> 2(cos3x)^2 - 1
> *2cos^2x -1*
LHS = RHS
*HENCE* *PROVED*
Similar questions