Math, asked by beherakumkum3, 6 months ago

prove cosA/1-sinA=1+sinA/cosA​

Answers

Answered by jaladiprathibhasagar
2

Step-by-step explanation:

the explanation is given

Attachments:
Answered by kaushik05
10

To prove :

 \star \:  \dfrac{ \cos \:  \alpha }{1 -  \sin( \alpha ) }  =  \dfrac{1 +  \sin( \alpha ) }{ \cos( \alpha ) }   \\

Solution:

LHS :

 \leadsto \:  \dfrac{ \cos( \alpha) }{1 -  \sin( \alpha ) }

Rationalise the denominator .

 \leadsto \:  \dfrac{ \cos( \alpha ) }{1 -  \sin( \alpha ) }  \times  \dfrac{1 +  \sin( \alpha ) }{1 +  \sin( \alpha ) }  \\  \\  \\  \leadsto \:  \dfrac{ \cos( \alpha ) (1 +  \sin( \alpha )) }{{1}^{2}  -  { \sin}^{2}  \alpha }  \\  \\  \leadsto \:  \frac{ \cos( \alpha ) (1  +   \sin( \alpha )) }{ { \cos}^{2} \alpha  }

Here cos@ gets cancel out .

 \implies \:  \dfrac{1 +  \sin( \alpha ) }{ \cos( \alpha ) }

LHS = RHS :

 \huge \blue{  \boxed { \red{\mathfrak{proved}}}}

Similar questions