Prove cosA/1-tanA+sinA/1-cotA=sinA+cosA
Answers
Answered by
2
Mark as a brainlist dood plz
Answer:
Step-by-step explanation:
LHS
=cosA/(1-tanA)+sinA/(1-cotA)
=cos A/(1 - sin A/cos A) + sin A/(1 - cos A/sin A)
=cos²A/ (cos A - sin A) + sin²A / (sin A - cos A)
=cos²A/ (cos A - sin A) - sin²A / (cos A - sin A)
=(cos ² A - sin ² A) / (cos A - sin A)
=(cos A - sin A)(cos A + sin A) / (cos A - sin A)
=cos A + sin A i.e RHS
Answered by
1
Solution==>
cosA/ (1-tanA) - sinA/(1-cotA) = cosA + sinA
We know that:
tanA = sinA/cosA
cotA = cosA/sinA
Now substitute in L.H.S:
==> cosA/(1-sinA/cosA) - sinA/(1-cosA/sinA)
= cosA/[(cosA-sinA)/cosA] - sinA/[(sinA-cosA)/sinA]
= (cos^2 A - sin^2 A)/ (cosA-sinA)
= (cosA-sinA)(cosA+ sinA)/(cosA-sinA)
= cosA + sinA = R.H.S
harjotsinghbhinder13:
plz mark IT AS BRAINLIEST
Similar questions