Math, asked by vedashreeraut, 7 months ago

prove:
cosA-2cos^3A/2sin^3A-sinA=cotA​

Answers

Answered by RvChaudharY50
2

Answer :-

→ (cosA - 2cos^3A)/(2sin^3A - sinA) = cotA

→ cosA(1 - 2cos²A) / sinA(2sin²A - 1) = cotA

using ,

  • cos2A = 2 cos²A - 1 => - cos2A = 1 - 2 cos²A
  • cos2A = 1 - 2sin²A => - cos2A = 2sin²A - 1

→ cosA * (- cos2A) / sinA * (- cos2A) = cotA

→ cosA / sinA = cotA

using ,

  • cos A / sinA = cotA

cotA = cotA (Proved)

Learn more :-

It sino + tano = m

tano - sino an

Then express the

values of m²-n² in terms

of M and N

https://brainly.in/question/13926306

tanA/(1-cotA) + cotA/(1-tanA)

https://brainly.in/question/16775946

Similar questions