prove:
cosA-2cos^3A/2sin^3A-sinA=cotA
Answers
Answered by
2
Answer :-
→ (cosA - 2cos^3A)/(2sin^3A - sinA) = cotA
→ cosA(1 - 2cos²A) / sinA(2sin²A - 1) = cotA
using ,
- cos2A = 2 cos²A - 1 => - cos2A = 1 - 2 cos²A
- cos2A = 1 - 2sin²A => - cos2A = 2sin²A - 1
→ cosA * (- cos2A) / sinA * (- cos2A) = cotA
→ cosA / sinA = cotA
using ,
- cos A / sinA = cotA
→ cotA = cotA (Proved)
Learn more :-
It sino + tano = m
tano - sino an
Then express the
values of m²-n² in terms
of M and N
https://brainly.in/question/13926306
tanA/(1-cotA) + cotA/(1-tanA)
https://brainly.in/question/16775946
Similar questions