Math, asked by divya1268, 1 year ago

prove (cosecA-sinA)secA-cosA=1/tanA+cotA​

Answers

Answered by rajdeepdas2003
2

this pic is your answer...

hope this helps you....

please mark this answer as the brainliest....

Attachments:

divya1268: do you know how to delete comments wt we have chat
rajdeepdas2003: no..
rajdeepdas2003: why?
divya1268: if any one see the chat
rajdeepdas2003: that's why i told u to chat in WhatsApp..
rajdeepdas2003: and not here..
divya1268: ok
divya1268: bye
rajdeepdas2003: hm.
rajdeepdas2003: u still didn't add..
Answered by aquialaska
0

Answer:

To  Prove: (cosec\,A-sin\,A)(sec\,A-cos\,A)=\frac{1}{tan\,A+cot\,A}

Consider,

LHS = (cosec\,A-sin\,A)(sec\,A-cos\,A)

       =(\frac{1}{sin\,A}-sin\,A)(\frac{1}{cos\,A}-cos\,A)

       =(\frac{1-sin^2\,A}{sin\,A})(\frac{1-cos^2\,A}{cos\,A})

       =(\frac{cos^2\,A}{sin\,A})(\frac{sin^2\,A}{cos\,A})

       =cos\,A\:\:sin\,A

RHS = \frac{1}{tan\,A+cot\,A}

       =\frac{1}{\frac{sin\,A}{cos\,A}+\frac{cos\,A}{sin\,A}}

       =\frac{1}{\frac{sin^2\,A+cos^\,A}{cos\,A\:\:sin\,A}}

       =\frac{cos\,A\:\:sin\,A}{sin^2\,A+cos^2\,A}

       =\frac{cos\,A\:\:sin\,A}{1}

       =cos\,A\:\:sin\,A

LHS = RHS

Hence Proved.

Similar questions